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ABSTRACT

The proposed addition of a third carrier for the
modernized GPS as well as providing three and
possibly four carriers for the planned Galileo system
will boost the performance of carrier phase based
positioning within the next decade. In principle,
instantaneous (one-epoch) ambiguity resolution
becomes feasible for a broad range of applications.

Beyond the system level developments - regarding
the frequency allocation and signal structure - the
proposal of three and four -carrier frequencies
enables new approaches at the processing level.

The Factorized Multi-Carrier Ambiguity Resolution
(FAMCAR) algorithm introduces a number of new
independent linear combinations of carrier-phase
observations as well as of carrier-phase and pseudo-
range observations. The combinations include the
minimume-error geometric carrier-phase combination,
the minimum-error ionosphere combination, the new
Quintessence combinations and the code-carrier
combinations. From these individual estimates, the
full floating solution for all carriers is derived.

The paper will give a description of the approach and
the statistical properties of these new linear
combinations. Results of an experiment using
FAMCAR for hardware-simulated data are presented
in another paper.

Existing standard techniques for multi-carrier
ambiguity determination wusually apply one big
Kalman filter to estimate all unknowns (e.g. position,
ambiguities, ionosphere and multipath). The
factorization enables the stepwise modeling of each
error component and leads therefore to a bank of
significantly smaller filters. This approach results in
significantly higher computational efficiency for the
Kalman filter sets (i.e. float solution) und a better
knowledge of error components for the individual
measurements. In addition to enabling efficient
processing of three and four carrier data the new
approach is already applicable to a dual-frequency
system. Furthermore the decreased computational
load enables the use of smaller processor
components and therefore provides a significant cost
reduction.

INTRODUCTION

In the past years, starting with an existing technique
a new and very efficient ambiguity resolution
algorithm has been developed. Focusing on
temporally correlated error sources like multipath and
ionosphere, a solution was sought to handle these
without sacrificing computational efficiency. These
advances processing techniques were first
implemented for two carriers in the Trimble Total
Control 2.7 post-processing package. The extension
to three and more carriers was implemented to
provide a powerful and efficient processing method to
an analysis experiment.

To emulate performance analyses near to reality, a
hardware simulation of the new signals was
performed under an ESA/ESTEC contract. This
project is the follow-up of experiments investigating
three-carrier ambiguity resolution ([Vollath et. al.
1998], [Vollath et. al. 2001]). The main purpose of the
experiment was to investigate if the benefits of a
fourth carrier justify a commercial pay-service. Also,
differences in the expected performance of
modernized GPS and Galileo were of interest.

Another paper submitted to this conference ([Sauer
et. al. 2004]) gives a brief overview on the actual
experiment performed at the European Space and
Technology Centre (ESTEC).



This paper starts with overviews of ambiguity
resolutions techniques, and especially the ones
designed for use with the new three (and more)
carrier GNSS.

The importance of modeling temporally correlated
errors is stressed in the next paragraph.

Next, a first approach for a factorized solution is
presented. The extension of this starting point to a
completely decentralized approach is the central
topic of this paper.

Statistical and computational properties of this new
ambiguity resolution algorithm are given finally,
justifying the approach as a valid, effective and
enabling technique.

AMBIGUITY RESOLUTION ALGORITHMS

Various algorithms exist for the resolution of the
carrier-phase  ambiguities. Despite all  their
differences, some properties can be given that are
common for many of them. The differences are
articulated in all steps of the complete ambiguity
resolution process (Figure 1).
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Figure 1: Ambiguity Resolution Process

The main steps in ambiguity resolution and their
variations are:

Estimation (Float Solution)

Typically using some sort of lest-squares adjustment,
ambiguities are estimated not accounting for their
integer nature. The computation of the floating
solution can be done geometry-free or accounting for
the geometry. Error sources can be modeled
differently (see below).

Search

The best candidates for integer ambiguities are
computed from their floating  counterpart.

Bootstrapped algorithms or strict Integer Least
Squares are used here or variants thereof.

Validation

The best solution is validated, i.e. it is verified that
with a high probability the best solution is also the
correct solution. Common tests are: ADOP-Test,
Ratio-Test, Fisher-Test and other tests ([Teunissen
et. al. 1997], [Wang et. al. 1998]).

The main focus of this paper is on the estimation part
and the modeling of the errors.

THREE-CARRIER AMBIGUITY RESOLUTION

Since the discussions of designing Galileo for three
carriers ([Hein et. al. 2004]) and adding a third
frequency to GPS ([Cliatt 2003]), various proposals
have been made on how to use this additional
information. Among the basic proposals, the first
TCAR (Three Carrier Ambiguity Resolution) algorithm
has been presented by R.A. Harris (([Harris 1997],
[Forssell et. al. 1997]).

Figure 2 shows the relation of some well-known
algorithms to the categories presented before.
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Figure 2: Ambiguity Resolution Algorithms

Harris TCAR/CIR

In 1997 a bootstrapped ambiguity resolution was
proposed that resolved the ambiguities for three
carriers in three steps using the so-called extra-
widelane, widelane and L1 carrier phases ([Harris
1997], [Forssell et. al. 1997]). As a bootstrapped
ambiguity resolution algorithm, it fails to maximize the
success rates. Defined totally geometry-free, it also
doesn’t make use of the geometric information.
Though very simple, this method ignores problems
with multipath and ionosphere, and is mainly for that
reason not of much practical relevance. Instead, it
was a starting point for multiple algorithms, including
CIR (Cascaded Integer Resolution). Multiple
improvements have been developed since. Today,
the term TCAR comprises the general family of
ambiguity resolution algorithms for three carriers.



Integrated TCAR/WARTK-3

Derived from the first TCAR, Integrated TCAR
addressed some fundamental problems of it. By
including geometry information, the success rates are
increased. Also, ionosphere is modeled at least to
some extent as random walk. WARTK and WARTK-3
([Hernandez-Pajares et. al. 2003]) are derived from
Integrated TCAR. Latter method adds externally
derived topographic ionosphere models to the last
TCAR step which is most vulnerable to ionosphere.

FAMCAR |

In a next evolution step, a full integer least squares
search is implemented. The recommended efficient
search method is LAMBDA here. Full use of
geometry is made by the floating solution consisting
of geometry and a geometry-free part (details below).

FAMCAR I

The topic of this paper, this step extended FAMCAR
with  stochastic modeling of multipath and
ionosphere. A very efficient floating solution set-up to
enable full modeling is used (details below).

“Big Filter” techniques

The complete observation equations are handled in
one Kalman filter. Geometric and geometry-free
information is not separated. Several degrees of
multipath and ionosphere modeling are possible,
from ignoring to complete modeling. This approach
results in filters with many states, especially for many
carrier frequencies.

FACTORIZED MULTI-CARRIER AMBIGUITY
RESOLUTION (FAMCAR)

During the TCAR-Test experiment funded by ESTEC
([Vollath et. al. 2001, | & 1I]), a first version of
Factorized  Multi-Carrier  Ambiguity  Resolution
(FAMCAR) has been developed. The basic concept
is separation of geometric and geometry-free
information in the floating filter process, i.e. a
federated filter approach ([Carlsson 1990]) for the
floating solution.

In principle, the geometry filter determines the
correlation between satellites by taking into account
that the measurements refer to one common
position. The geometry-free filters are independent
between satellites and thus return the correlations
between the ambiguities of the same satellite for
different carriers.

The benefits are characterized by obtaining a better
understanding of influences of signal structure
(mainly affecting the geometry-free part) and
geometry and introduction of efficiency as ,enabling
technique®. Due to the amount of data to be
processed for analysis, tuning and final result
processing, a fast processing option was necessary.
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Figure 3: First FAMCAR technique

An overview of the first FAMCAR technique is given
in Figure 3.

For this FAMCAR version, all errors considered
Gaussian (multipath) or Random walk (ionosphere).

The consequential extension of the FAMCAR
philosophy leads to the algorithm presented in this
paper. In principle, separation of uncorrelated
observables into different filters has been extended
to a maximum.

GM(1) MODELING

Among the different error sources present in GNSS
signals, two are examined in more detail here:
Multipath and ionospheric delay. Many models have
been applied to these error sources, including no
modeling (ignore the problem), Gaussian noise
(ignoring the temporal correlation), constant bias
(especially for ionosphere). Though not perfect,
currently one of the best models for multipath is a
first order Gauss-Markov process (GM(1)). For short
observation periods and in lack of any physical
modeling of the ionospheric layer, the same applies
to ionosphere.

For Gaussian noise, the evolution of variances for n
observations follows the formula
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Figure 4 shows the example of a process consisting
of a Gaussian noise component and a GM(1)
process. The “Autocorrelation” graph shows the
resulting autocorrelation function, having a peak at 0
seconds delay and dropping immediately to a value
determined by the relation of correlated to total error.



After that, the typical exponential reduction of the
correlation is shown. If this process is filtered
assuming Gaussian noise only, the “Mismodeled
Convergence” graph results, showing the relative
improvement of a posteriori standard deviation over
time. The correct implementation with Gaussian plus
GM(1) errors (“True Convergence”) results in much
higher (and realistic) a posteriori standard deviations.
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Figure 4: GM(1) process example with noise

One of the main problems with modeling these errors
as noise is not so much the quality of estimation but
the provided a posteriori variance.

The two problems arising from this effect are: first,
validation procedures using the a posteriori variance
(e.g. ADOP tests) are returning too optimistic
success rates, second, the combination of different
estimates having different correlation times result in
severe mis-weighting, e.g. between code and carrier
observations.

FAMCAR OBSERVABLES AND FILTERS

As a starting point, per carrier-frequency two
observables are available: Carrier phase and
pseudorange. So in principle, for n carrier
frequencies, it should be possible to design 2n
separate filters. An observable combination comb
can be defined in terms of the carrier and code

coefficients a,,,,andb
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Here, ¢ denotes the i" carrier phase observable and

p;the i" code observable.

All carrier phase combinations are characterized by:

The combinations constructed are the following:
Minimum-error geometric carrier phase

The “geometric” condition is defined as follows:
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In addition, the total error (also including ionospheric
residual) is minimized (see also [Sjéberg 1990]). The
resulting carrier phase observable is used in a
conventional floating solution geometric filter.
Optimally, this filter models temporally correlated
errors in the combination from residual ionosphere
and multipath.

Minimum-error ionospheric geo-free carrier phase

For this combination, the “geometry-free” condition
must be met:
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Also, the combination must contain the full
ionospheric  residual, making the combination
“ionospheric”:
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For more than two carriers, additional degrees of
freedom are available for the combination, enabling
to define a minimum-error geometry-free ionospheric
combination (see below).

Geometry-free and ionosphere-free

For complete use of the carrier phase information,
only two combinations have been considered so far.
For nf carriers, this leaves nf-2 independent carrier
combinations  to  define. These  additional
combinations are geometry-free and ionosphere-free:
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Due to this nature of being free from geometry, clock,
troposphere and ionosphere errors, they are called
Quintessence combinations (see [Paracelsus]).

For more than three carriers multiple independent
Quintessence combinations are possible.

Geometry-free and ionosphere-free code-carrier

To use the code information, for every carrier
frequency k a code-carrier combination is defined
using exactly one original code observation.
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The complete combination is again defined
geometry-free and ionosphere-free:
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Additional degrees of freedom can be satisfied
applying a minimum error condition concerning the
carrier phase combination (see below).

All geometry-free observable combinations are
filtered with a simple filter minimally modeling the
ambiguity, optimally modeling the temporally
correlated remaining errors.

Figure 5: Full FAMCAR process

In Figure 5 the complete FAMCAR filter setup is
shown. It consists of one geometry filter, a bank of
ionosphere filters (1 per satellite), a set of nf-2 banks
of Quintessence filters and a set of nf banks of code-
carrier filters.

FAMCAR COMBINATION

The combinations defined before each observe and
ambiguity combination defined by the carrier
coefficients. To retrieve the complete solution for all
satellites and all original carrier frequencies, a least-
squares adjustment of the individual filter results is
performed:
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with float solutions )?p, covariance matrices Qp and
carrier phase coefficients ép for observable

combination p € {geo,ionO,CCk,Qk}-

The resulting floating solution x_,,and covariance

matrix Q. . is finally processed by integer least

squares (e.g. LAMBDA) and established validation
procedures to retrieve the best solution and its
probability of correctness.

STATISTICAL PROPERTIES

The set-up of the observables handled by the
FAMCAR filters has the following important
properties, justifying the whole approach. To present
them, a covariance analysis has to be performed.

First an augmented coefficient vector is defined:
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This coefficient vector contains carrier and code
coefficients together with a last one defining the
resulting ionospheric residual in the combined
observable. The complete covariance matrix for
carrier, code and ionospheric residual variances can
be defined as
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with the carrier phase variance G¢i2 for the i carrier,

op; for the i" code and o, for the variance of the
ionospheric residual. Please note that no covariance
between frequencies have been accounted for.
Though — due to the L2 tracking techniques
implemented — there is some correlation between L1
and L2 for typical GPS data, this correlation is limited
to the noise component and is neglectable at



everything but zero-baselines. For Galileo and
modernized GPS, no such correlation effect is to be
expected. In principle, they could be included in the
formulas.

Now the total error of an observable combination
¢ can be determined:

o’(@)=¢c"-0-¢

This is the value minimized for any of the minimum-
error combinations. Also, the covariance between

two combinations ¢,and ¢, is computed as:

0(51,52):51T -Q-¢,

For the first FAMCAR algorithm, it has already been
shown that the minimum-error carrier phase
combination and any geometry-free observable are
uncorrelated. It can be shown similarly that the
minimume-error ionospheric combination and any
geometry- and ionosphere-free combination are
uncorrelated, too (the lengthy proof is beyond the
scope of this paper).

For the code-carrier combinations, “practically”
uncorrelated observable combinations are defined.
Considering the fact that the code error variance is
orders of magnitude higher than the carrier phase
variances, only the code variances have to be
accounted for. This results in a neglectable
correlation with the carrier phase combinations. In
addition, the code-carrier combinations are
ionosphere and geometry free and constructed from
one code observation each. This creates them
uncorrelated with each other. Though it should be
possible to design truly uncorrelated observable
combinations here, the additional complication is by
far outweighing the benefits of a theoretically “more
clean” solution.

U(Elagz)ZElT 0-¢,=0

COMPUTATIONAL DEMANDS

The least-squares filtering method is fundamentally
of cubic order with respect to the number of states
modeled. For this comparison, the full filter solution
has position and receiver clock error states,
ionosphere states per satellite and ambiguity and
code and carrier multipath states per satellite per
frequency. The FAMCAR geometry filter has position
and receiver clock error states, one ambiguity and
one carrier multipath/iono state per satellite. The
geometry-free filters are all simple scalar filters.

The following table gives some examples of the load
and the improvement factor of FAMCAR over the full
filter formulation.

6 34 106 240
7 37 115 264
8 39 124 284
9 41 131 302
10 43 137 317

To present the FAMCAR technique as an enabling
method for improved processing, the following table
is given. It shows the complexity of the simple
modeling case for the full filters versus the complete
modeling in FAMCAR.

No. Improvement 2 | Improvement3 | Improvement 4
Satellites freq freq freq

5 0.5 1.2 2.5

6 0.5 1.4 2.9

7 0.6 1.6 3.3

8 0.6 1.7 3.7

9 0.6 1.8 4.0

10 0.7 1.9 4.3

No. Improvement 2 | Improvement3 | Improvement 4
Satellites freq freq freq

5 31 94 212

For two frequencies, the transition to full modeling
has only a small impact if using FAMCAR instead of
the full filter approach. For three and four
frequencies, even a speed improvement will be
implemented.

SUMMARY

FAMCAR is mainly a very efficient method for
computing a floating solution for multiple carrier
signals in order to provide a powerful vyet
computationally low profile solution. As the modeling
of temporal correlations has a much smaller impact
on the processing demands than for classical “big
filter” approaches, this qualifies FAMCAR as an
enabling technique for complete modeling of errors.
This is even truer the more carrier frequencies are
available.

The presented FAMCAR technique has been filed for
an U.S. patent.
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