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ABSTRACT  

The proposed addition of a third carrier for the 
modernized GPS as well as providing three and 
possibly four carriers for the planned Galileo system 
will boost the performance of carrier phase based 
positioning within the next decade. In principle, 
instantaneous (one-epoch) ambiguity resolution 
becomes feasible for a broad range of applications. 

Beyond the system level developments - regarding 
the frequency allocation and signal structure - the 
proposal of three and four carrier frequencies 
enables new approaches at the processing level. 

The Factorized Multi-Carrier Ambiguity Resolution 
(FAMCAR) algorithm introduces a number of new 
independent linear combinations of carrier-phase 
observations as well as of carrier-phase and pseudo-
range observations. The combinations include the 
minimum-error geometric carrier-phase combination, 
the minimum-error ionosphere combination, the new 
Quintessence combinations and the code-carrier 
combinations.  From these individual estimates, the 
full floating solution for all carriers is derived. 

The paper will give a description of the approach and 
the statistical properties of these new linear 
combinations. Results of an experiment using 
FAMCAR for hardware-simulated data are presented 
in another paper. 

Existing standard techniques for multi-carrier 
ambiguity determination usually apply one big 
Kalman filter to estimate all unknowns (e.g. position, 
ambiguities, ionosphere and multipath). The 
factorization enables the stepwise modeling of each 
error component and leads therefore to a bank of 
significantly smaller filters. This approach results in 
significantly higher computational efficiency for the 
Kalman filter sets (i.e. float solution) und a better 
knowledge of error components for the individual 
measurements. In addition to enabling efficient 
processing of three and four carrier data the new 
approach is already applicable to a dual-frequency 
system. Furthermore the decreased computational 
load enables the use of smaller processor 
components and therefore provides a significant cost 
reduction.  

INTRODUCTION 

In the past years, starting with an existing technique 
a new and very efficient ambiguity resolution 
algorithm has been developed. Focusing on 
temporally correlated error sources like multipath and 
ionosphere, a solution was sought to handle these 
without sacrificing computational efficiency. These 
advances processing techniques were first 
implemented for two carriers in the Trimble Total 
Control 2.7 post-processing package. The extension 
to three and more carriers was implemented to 
provide a powerful and efficient processing method to 
an analysis experiment. 

To emulate performance analyses near to reality, a 
hardware simulation of the new signals was 
performed under an ESA/ESTEC contract. This 
project is the follow-up of experiments investigating 
three-carrier ambiguity resolution ([Vollath et. al. 
1998], [Vollath et. al. 2001]). The main purpose of the 
experiment was to investigate if the benefits of a 
fourth carrier justify a commercial pay-service. Also, 
differences in the expected performance of 
modernized GPS and Galileo were of interest. 

Another paper submitted to this conference ([Sauer 
et. al. 2004]) gives a brief overview on the actual 
experiment performed at the European Space and 
Technology Centre (ESTEC).  



This paper starts with overviews of ambiguity 
resolutions techniques, and especially the ones 
designed for use with the new three (and more) 
carrier GNSS. 

The importance of modeling temporally correlated 
errors is stressed in the next paragraph. 

Next, a first approach for a factorized solution is 
presented. The extension of this starting point to a 
completely decentralized approach is the central 
topic of this paper. 

Statistical and computational properties of this new 
ambiguity resolution algorithm are given finally, 
justifying the approach as a valid, effective and 
enabling technique. 

AMBIGUITY RESOLUTION ALGORITHMS 

Various algorithms exist for the resolution of the 
carrier-phase ambiguities. Despite all their 
differences, some properties can be given that are 
common for many of them. The differences are 
articulated in all steps of the complete ambiguity 
resolution process (Figure 1). 

Validation

Integer 
Solution

Candidate 
Solution/s

Search

Floating 
Solution

Estimation

GNSS 
Data

Validation

Integer 
Solution

Candidate 
Solution/s

Search

Floating 
Solution

Estimation

GNSS 
Data

 
Figure 1: Ambiguity Resolution Process 

The main steps in ambiguity resolution and their 
variations are: 

Estimation (Float Solution) 

Typically using some sort of lest-squares adjustment, 
ambiguities are estimated not accounting for their 
integer nature. The computation of the floating 
solution can be done geometry-free or accounting for 
the geometry. Error sources can be modeled 
differently (see below). 

Search 

The best candidates for integer ambiguities are 
computed from their floating counterpart. 

Bootstrapped algorithms or strict Integer Least 
Squares are used here or variants thereof. 

Validation 

The best solution is validated, i.e. it is verified that 
with a high probability the best solution is also the 
correct solution. Common tests are: ADOP-Test, 
Ratio-Test, Fisher-Test and other tests ([Teunissen 
et. al. 1997], [Wang et. al. 1998]). 

The main focus of this paper is on the estimation part 
and the modeling of the errors. 

THREE-CARRIER AMBIGUITY RESOLUTION 

Since the discussions of designing Galileo for three 
carriers ([Hein et. al. 2004]) and adding a third 
frequency to GPS ([Cliatt 2003]), various proposals 
have been made on how to use this additional 
information. Among the basic proposals, the first 
TCAR (Three Carrier Ambiguity Resolution) algorithm 
has been presented by R.A. Harris (([Harris 1997], 
[Forssell et. al. 1997]). 

Figure 2 shows the relation of some well-known 
algorithms to the categories presented before. 
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Figure 2: Ambiguity Resolution Algorithms 

Harris TCAR/CIR 
In 1997 a bootstrapped ambiguity resolution was 
proposed that resolved the ambiguities for three 
carriers in three steps using the so-called extra-
widelane, widelane and L1 carrier phases ([Harris 
1997], [Forssell et. al. 1997]). As a bootstrapped 
ambiguity resolution algorithm, it fails to maximize the 
success rates. Defined totally geometry-free, it also 
doesn’t make use of the geometric information. 
Though very simple, this method ignores problems 
with multipath and ionosphere, and is mainly for that 
reason not of much practical relevance. Instead, it 
was a starting point for multiple algorithms, including 
CIR (Cascaded Integer Resolution). Multiple 
improvements have been developed since. Today, 
the term TCAR comprises the general family of 
ambiguity resolution algorithms for three carriers. 
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Derived from the first TCAR, Integrated TCAR 
addressed some fundamental problems of it. By 
including geometry information, the success rates are 
increased. Also, ionosphere is modeled at least to 
some extent as random walk. WARTK and WARTK-3 
([Hernández-Pajares et. al. 2003]) are derived from 
Integrated TCAR. Latter method adds externally 
derived topographic ionosphere models to the last 
TCAR step which is most vulnerable to ionosphere. 
 
FAMCAR I 
In a next evolution step, a full integer least squares 
search is implemented. The recommended efficient 
search method is LAMBDA here. Full use of 
geometry is made by the floating solution consisting 
of geometry and a geometry-free part (details below). 

Figure 3: First FAMCAR technique 

An overview of the first FAMCAR technique is given 
in Figure 3. 

 For this FAMCAR version, all errors considered 
Gaussian (multipath) or Random walk (ionosphere). FAMCAR II 

The topic of this paper, this step extended FAMCAR 
with stochastic modeling of multipath and 
ionosphere. A very efficient floating solution set-up to 
enable full modeling is used (details below). 

The consequential extension of the FAMCAR 
philosophy leads to the algorithm presented in this 
paper. In principle, separation of uncorrelated 
observables into different filters has been extended 
to a maximum. 

 
“Big Filter” techniques 
The complete observation equations are handled in 
one Kalman filter. Geometric and geometry-free 
information is not separated. Several degrees of 
multipath and ionosphere modeling are possible, 
from ignoring to complete modeling. This approach 
results in filters with many states, especially for many 
carrier frequencies. 

GM(1) MODELING 

Among the different error sources present in GNSS 
signals, two are examined in more detail here: 
Multipath and ionospheric delay. Many models have 
been applied to these error sources, including no 
modeling (ignore the problem), Gaussian noise 
(ignoring the temporal correlation), constant bias 
(especially for ionosphere). Though not perfect, 
currently one of the best models for multipath is a 
first order Gauss-Markov process (GM(1)). For short 
observation periods and in lack of any physical 
modeling of the ionospheric layer, the same applies 
to ionosphere. 

FACTORIZED MULTI-CARRIER AMBIGUITY 
RESOLUTION (FAMCAR) 

During the TCAR-Test experiment funded by ESTEC 
([Vollath et. al. 2001, I & II]), a first version of 
Factorized Multi-Carrier Ambiguity Resolution 
(FAMCAR) has been developed. The basic concept 
is separation of geometric and geometry-free 
information in the floating filter process, i.e. a 
federated filter approach ([Carlsson 1990]) for the 
floating solution.  

For Gaussian noise, the evolution of variances for n 
observations follows the formula 
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The benefits are characterized by obtaining a better 
understanding of influences of signal structure 
(mainly affecting the geometry-free part) and 
geometry and introduction of efficiency as „enabling 
technique“. Due to the amount of data to be 
processed for analysis, tuning and final result 
processing, a fast processing option was necessary. 

Figure 4 shows the example of a process consisting 
of a Gaussian noise component and a GM(1) 
process. The “Autocorrelation” graph shows the 
resulting autocorrelation function, having a peak at 0 
seconds delay and dropping immediately to a value 
determined by the relation of correlated to total error. 



After that, the typical exponential reduction of the 
correlation is shown. If this process is filtered 
assuming Gaussian noise only, the “Mismodeled 
Convergence” graph results, showing the relative 
improvement of a posteriori standard deviation over 
time. The correct implementation with Gaussian plus 
GM(1) errors (“True Convergence”) results in much 
higher (and realistic) a posteriori standard deviations. 

The combinations constructed are the following: 

Minimum-error geometric carrier phase 

The “geometric” condition is defined as follows: 
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In addition, the total error (also including ionospheric 
residual) is minimized (see also [Sjöberg 1990]). The 
resulting carrier phase observable is used in a 
conventional floating solution geometric filter. 
Optimally, this filter models temporally correlated 
errors in the combination from residual ionosphere 
and multipath. 
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Figure 4: GM(1) process example with noise  

Minimum-error ionospheric geo-free carrier phase 

For this combination, the “geometry-free” condition 
must be met: 
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Also, the combination must contain the full 
ionospheric residual, making the combination 
“ionospheric”: 

One of the main problems with modeling these errors 
as noise is not so much the quality of estimation but 
the provided a posteriori variance.  

The two problems arising from this effect are: first, 
validation procedures using the a posteriori variance 
(e.g. ADOP tests) are returning too optimistic 
success rates, second, the combination of different 
estimates having different correlation times result in 
severe mis-weighting, e.g. between code and carrier 
observations. 
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For more than two carriers, additional degrees of 
freedom are available for the combination, enabling 
to define a minimum-error geometry-free ionospheric 
combination (see below). 

Geometry-free and ionosphere-free 
FAMCAR OBSERVABLES AND FILTERS For complete use of the carrier phase information, 

only two combinations have been considered so far. 
For nf carriers, this leaves nf-2 independent carrier 
combinations to define. These additional 
combinations are geometry-free and ionosphere-free: 

As a starting point, per carrier-frequency two 
observables are available: Carrier phase and 
pseudorange. So in principle, for n carrier 
frequencies, it should be possible to design 2n 
separate filters. An observable combination comb 
can be defined in terms of the carrier and code 
coefficients andb

r
. combar comb
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Due to this nature of being free from geometry, clock, 
troposphere and ionosphere errors, they are called 
Quintessence combinations (see [Paracelsus]). 
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Here, iφ denotes the ith  carrier phase observable and 

iρ the ith  code observable. 

For more than three carriers multiple independent 
Quintessence combinations are possible. 

Geometry-free and ionosphere-free code-carrier  
All carrier phase combinations are characterized by: To use the code information, for every carrier 

frequency k a code-carrier combination is defined 
using exactly one original code observation. 0
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The complete combination is again defined 
geometry-free and ionosphere-free: 
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Additional degrees of freedom can be satisfied 
applying a minimum error condition concerning the 
carrier phase combination (see below).  

All geometry-free observable combinations are 
filtered with a simple filter minimally modeling the 
ambiguity, optimally modeling the temporally 
correlated remaining errors. 
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Figure 5: Full FAMCAR process  
 
In Figure 5 the complete FAMCAR filter setup is 
shown. It consists of one geometry filter, a bank of 
ionosphere filters (1 per satellite), a set of nf-2 banks 
of Quintessence filters and a set of nf banks of code-
carrier filters. 

FAMCAR COMBINATION 

The combinations defined before each observe and 
ambiguity combination defined by the carrier 
coefficients. To retrieve the complete solution for all 
satellites and all original carrier frequencies, a least-
squares adjustment of the individual filter results is 
performed: 
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with float solutions pxr , covariance matrices Q and 

carrier phase coefficients a
p

p
r

for observable 

combination { }kQkccionop ,,geo,∈ . 

The resulting floating solution combxr and covariance 

matrix is finally processed by integer least 
squares (e.g. LAMBDA) and established validation 
procedures to retrieve the best solution and its 
probability of correctness.  

combQ

STATISTICAL PROPERTIES 

The set-up of the observables handled by the 
FAMCAR filters has the following important 
properties, justifying the whole approach. To present 
them, a covariance analysis has to be performed. 

First an augmented coefficient vector is defined: 
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This coefficient vector contains carrier and code 
coefficients together with a last one defining the 
resulting ionospheric residual in the combined 
observable. The complete covariance matrix for 
carrier, code and ionospheric residual variances can 
be defined as 
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with the carrier phase variance for the i2
iσφ th  carrier, 

for the i2
iσρ th  code and for the variance of the 

ionospheric residual. Please note that no covariance 
between frequencies have been accounted for. 
Though – due to the L2 tracking techniques 
implemented – there is some correlation between L1 
and L2 for typical GPS data, this correlation is limited 
to the noise component and is neglectable at 

2
ionoσ



everything but zero-baselines. For Galileo and 
modernized GPS, no such correlation effect is to be 
expected. In principle, they could be included in the 
formulas. 

Now the total error of an observable combination 
can be determined: cr

( ) cQcc T rrr
⋅⋅=2σ  

This is the value minimized for any of the minimum-
error combinations. Also  the covariance between 
two combinations and c is computed as: 

,

1cr 2
r

( ) 2121, cQccc T rrrr
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For the first FAMCAR algorithm, it has already been 
shown that the minimum-error carrier phase 
combination and any geometry-free observable are 
uncorrelated. It can be shown similarly that the 
minimum-error ionospheric combination and any 
geometry- and ionosphere-free combination are 
uncorrelated, too (the lengthy proof is beyond the 
scope of this paper). 

For the code-carrier combinations, “practically” 
uncorrelated observable combinations are defined. 
Considering the fact that the code error variance is 
orders of magnitude higher than the carrier phase 
variances, only the code variances have to be 
accounted for. This results in a neglectable 
correlation with the carrier phase combinations. In 
addition, the code-carrier combinations are 
ionosphere and geometry free and constructed from 
one code observation each. This creates them 
uncorrelated with each other. Though it should be 
possible to design truly uncorrelated observable 
combinations here, the additional complication is by 
far outweighing the benefits of a theoretically “more 
clean” solution. 

( ) 0, 2121 =⋅⋅= cQccc T rrrrσ  

COMPUTATIONAL DEMANDS 

The least-squares filtering method is fundamentally 
of cubic order with respect to the number of states 
modeled. For this comparison, the full filter solution 
has position and receiver clock error states, 
ionosphere states per satellite and ambiguity and 
code and carrier multipath states per satellite per 
frequency. The FAMCAR geometry filter has position 
and receiver clock error states, one ambiguity and 
one carrier multipath/iono state per satellite. The 
geometry-free filters are all simple scalar filters. 

The following table gives some examples of the load 
and the improvement factor of FAMCAR over the full 
filter formulation. 
No. 
Satellites 

Improvement 2 
freq 

Improvement 3 
freq 

Improvement 4 
freq 

5 31 94 212 

6 34 106 240 
7 37 115 264 
8 39 124 284 
9 41 131 302 

10 43 137 317 
To present the FAMCAR technique as an enabling 
method for improved processing, the following table 
is given. It shows the complexity of the simple 
modeling case for the full filters versus the complete 
modeling in FAMCAR. 
No. 
Satellites 

Improvement 2 
freq 

Improvement 3 
freq 

Improvement 4 
freq 

5 0.5 1.2 2.5 
6 0.5 1.4 2.9 
7 0.6 1.6 3.3 
8 0.6 1.7 3.7 
9 0.6 1.8 4.0 

10 0.7 1.9 4.3 
For two frequencies, the transition to full modeling 
has only a small impact if using FAMCAR instead of 
the full filter approach. For three and four 
frequencies, even a speed improvement will be 
implemented. 

SUMMARY 

FAMCAR is mainly a very efficient method for 
computing a floating solution for multiple carrier 
signals in order to provide a powerful yet 
computationally low profile solution. As the modeling 
of temporal correlations has a much smaller impact 
on the processing demands than for classical “big 
filter” approaches, this qualifies FAMCAR as an 
enabling technique for complete modeling of errors. 
This is even truer the more carrier frequencies are 
available. 

The presented FAMCAR technique has been filed for 
an U.S. patent. 
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